One of the ways to reach lower environmental impact targets, is to produce green hydrogen from water using energy generated from renewable energy sources, creating greener alternative to fossil fuel. In fact, it is something that Denmark is heavily investing in. The green hydrogen is generated using a process called electrolysis, where electricity is used to split water into hydrogen and oxygen. The hydrogen then be used as a green alternative to fossil-based products in various ways:
The green hydrogen also separates itself from fossil alternatives as its waste when burnt for heat is water and not CO2.
The hydrogen can also be used as a building block for other chemical processes, such as electro-fuels like methanol.
However, many challenges arise related to the water used in the electrolysis process to create the green hydrogen. The water needs to be ultra-pure before it can be used in the electroylsers, and the process of purifying the water can be energy intensive. This leads to many interesting questions;
As we scale up the hydrogen economy these questions about water for electrolysis will need technological, social and economic solutions.
What challenges do we have?
These questions are particularly relevant to us now. At GreenLab we are host to two large Power-to-X facilities; GreenLab Skive P2X and GreenHyScale.
The GreenLab Skive P2X:
The GreenLab Skive P2X is a 12 MW PtX-project supported by the Energy Agency/Energistyrelsen. The purpose is to use the green hydrogen and combine it with carbon dioxide from the on-site biogas plan to create methanol.
The GreenHyScale project:
The GreenHyScale project is a 100 MW PtX-project with 11 international partners. The project is supported by EU GreenDeal under Horizon2020. The facility will use 100 MW of electrolysers to produce green hydrogen, and securing water for projects of this scale will become a more pressing challenge as more projects of this size are implemented around the world.
Both projects use renewable energy from the energy park operated by Eurowind in Skive, and both of the projects are using the same electrolyser technology provided by Green Hydrogen Systems.
Recently, the first 6 MW test-module unit was delivered to GreenLab as part of the GreenHyScale project, moving the project into the implementation and testing phase for this unit. The hydrogen economy is taking its first steps in Skive, so the question of how best to provide water for electrolysis needs answers now.
This wide-reaching challenge is not something that just one person, or organization can solve, and will need to be solved by many different actors tackling different aspects of the challenge. In relation to this GreenLab has partnered with DTU Sustain to fund a project where Wenjing (Angela) Zhang is a leads a team of university researchers addresses some of the technical related to the purification of water for electrolysis through a combination of modelling and in lab experiments.
Hearing about the work that Angela’s team was doing Søren Nøhr Bak is a Senior Expertise Director at Niras contacted us asking to be involved in the project. Niras are providing the water purification for the Power-to-X projects at GreenLab and are looking to the future of providing water for electrolysis.
As you can see this challenge is bigger than just one project can cover, and is something that we hope the students taking on this challenge can appreciate, tackling one piece of this problem, and through small contributions to the greater challenge, sharing knowledge that will help bring us one step closer to a solution. This idea of tackling problems from many different angles, utilizing the expertise of different fields is at the core of mission driven research, something that we at GreenLab strive to focus on when participating in research projects, as it aligns with our values of co-creation.
Students tackling this challenge may want to look at the technical aspects of the project, the energy consumption needed for water purification, the difficulties in providing such high purity of water, or the benefits of the purity of water for the lifetime of the electrolysers.
Those with an interest in numbers and modelling could start to look at the amount of purified water needed to meet the targets set in regard to decarbonisation Danish and global energy consumption, and how much energy is then needed to purify that.
They may instead want to look at the social impact of such a problem, is it ok to use drinking water for industrial needs, should the water instead be purified from wastewater by the companies producing the hydrogen? What wastewater can be used? Are their regulations that govern this and if not, when do we need them?
Students who have a background in socioeconomics may instead be interested in the economy of providing this water from different sources, what price can be placed on it? Is there a business case for a combination of water treatment and water for electroylsers? Would this generate jobs for the local community?
We hope that students will engage in the problem, and potentially challenge our thinking on some of our current ideas. We want the students to see this as an opportunity to contribute to the shared knowledge and discourse we have when we talk about how Power-to-X technologies will impact society. To come with their ideas and allow us to learn from them. We are excited to see what they come up with.
Data for this challenge is provided by Center Denmark from their platform of unique data from the energy sector.
In this video Center Denmark explains how to understand and use the sheet.
The textile industry is among the most polluting and environmentally hurtful industries in the world, attributed for up to 10% of our global emissions. And while incentives for a green transition are increasing (Danish legislation for collection by summer 2023, EU by 2025), the industry still lacks technologies and industrial capacities to realize large scale recycling. Resultingly, only a few percent of the yearly produced textiles are recycled into new textile products. Meanwhile, most of our donated textiles for re-use are often of such a bad quality, that they cannot be resold in Europe, and instead they end up in African landfills, where they cause environmental threaths.
One of the main reasons why so little is recycled, is due to a lack of sorting capacity. Textiles come in many different colors, shapes, materials and with different accessories sewed unto them. This poses a huge challenge for recycling, as the recycling processes require very well sorted fraction, for them to recycle the old textiles. This is where NewRetex come into play with our innovative sorting technologies, which we use to sort waste textiles for recycling. Using a mixture of specialized sensors and intelligent algorithms, we are able to detect more than 30 different material compositions while also sorting into different color categories. All this is done without human hands, using our robot technologies.
While our pilot plant can process around 10t textile waste per week, we will be receiving a larger sorting line in early autumn, making us able to process 10t per day. And while plans are in store for a yearly capacity of 20.000 tonnes of waste textiles only in Denmark, we are beginning to look out towards the European market. In two years, (almost) all European member states will be required to conduct municipal collection of textile waste, with the aim of recycling. We have the technologies ready to rollout, and are in the process of proving our business case. However, we are still trying to figure out the best strategy for our European expansion. And for this reason, we are looking for fresh minds with interesting perspectives and strong capabilities within business strategy and the field of circular economy.
Hopefully, we can stitch together a plan which will make us able to increase the recycling of waste textiles throughout all of Europe in the coming years!
What are the problems we wish to solve? What challenges do we have?
What conditions must be considered and included in the idea/solution for it to be useful for your company/organization? (Maximum 10 lines)
• Analysis of the current and future markets for fibers and yarn products in the EU.
• Analysis of the current and future legislation throughout the EU member states.
• Analysis of the current and future industrial hubs for the textile industry.
• Construction of one or more multi-phase rollout strategies, based on the analyses above.
o Which countries should we target first, and why? What about the next phase?
o Mapping of advantages/disadvantages and opportunities/threats for each proposed strategy.
• Financial evaluations to support the strategies, which can be incorporated into a business plan.
• Evaluations of environmental impacts of the strategies – how do we minimize our emissions from collection, transport and production?
What are the problems we wish to solve? What challenges do we have?
The market for recycled fibers is still very immature with little to no standardization.
The textile industry contains quite long and complicated value chains. Textile are often manufactured in different locations before finished products are achieved.
How can all the knowledge from the above questions be combined and analyzed in a meaningful way to come up with a strategy for rolling out or sorting lines in Europe.
NewRetex A/S has specialists within:
Municipalities and regional waste collection companies:
Legislators:
Others:
Relevant methods of financial analysis
We can provide data on the contents of textile waste and our current and expected future costs and prices. Environmental analysis and considerations of the proposed rollouts.
We hope that the perspectives and analyzes can help us navigate our rollout and build a solid business plan, upon which we can build the needed investor setup for increasing the textile recycling within Europe!
We know that it is impossible to cover all of the suggested aspects, but we encourage students to find their own perspectives and pursue the angles which they find must relevant!
Furthermore, we hope to be able to meets some bright students, who would be interested in working further together with us and maybe eventually become a part of our fast growing team!
Having achieved a strategy and overall business plan, we need to further refine, collect investors and roll out our technology to as many countries as possible, in the smartest possible way!
All educations related to:
We prefer masters students or students on their last semesters of their bachelor’s degree.
Newretex.dk - is currently under update – English version is coming
NewRetex on LinkedIn - to see our latest updates and progress. Also, you can meet our team.
Example: Report over contents of textile waste fraction
Stenger & Ibsen Construction leverer turnkey-solutions til landvindmølleindustrien. Dette arbejde består af Balance of Plant (BoP), samt Electrical Balance of Plant (E-BoP), hvormed Stenger & Ibsen Construction leverer vejene, fundamenter, kabellægning osv. Stenger & Ibsen Construction er en del af processen fra den initierende planlægning til afleveringen af en færdig vindpark, hvor selve møllen blot skal tilkobles. Gennem denne periode tilbyder Stenger & Ibsen Construction teknisk rådgivning samt kvalitet- og sikkerhedssikring, udover det fysiske arbejde som besår af bl.a. skovrydning, opsætning af skurvognsfaciliteter, konstruktionen af kran-planer m.m.
Stenger & Ibsen Construction blev etableret i 2003 af Johan Stenger og Jens Ibsen. Sammen har de etableret en virksomhed, der har afleveret mere end 1000 fundamenter og i dag eksisterer i fire lande, henholdsvis Danmark, Sverige, Norge og Finland. Virksomhedens vision er at blive ”The Foundation for Windpower” ved at opfylde hver kundes unikke behov i hele Norden. Grundet dette er nogle af virksomhedens kerneværdier evnen til at skabe værdi samt evnen til at udvikle den korrekte løsning. Med det globale fokus på klimaet og bæredygtighed, involverer disse kerneværdier i en højere grad et større fokus på Stenger & Ibsen Constructions miljømæssige påvirkning på kloden.
Med udgangspunkt i ”9 Planetary Boundaries” ønsker Stenger & Ibsen Construction et øget fokus på biodiversitet, og hvordan vi kan vækste dette på vores sites rundt omkring i Skandinavien. Mere specifikt ”Hvordan øger vi bedst biodiversiteten og forbedre økosystemet på vores sites?”. Her er målsætningen at finde den bedste målbare metode til at forbedre habitatet.
Formålet med udfordringen er både til gavn for virksomheden, området og samfundet. På nuværende tidspunkt ses der statistisk ingen tegn på, at risikoen for at mindske biodiversitetstabet falder, hvor dette kan forbedres gennem et øget fokus på at beskytte og forbedre biosfæren. Ydermere giver det Stenger & Ibsen Construction muligheden for at adskille sig fra konkurrenterne gennem et anderledes tiltag indenfor bæredygtighed.
Vi vil gerne have, at løsningen indeholder en specifik målbar metode til at forbedre biodiversiteten på vores sites. Denne metode skal gerne indeholde en proces beskrivelse, materiale liste m.m., som tager hensyn til jordforholdene og det naturlige habitat i Skandinavien. Løsningen skal være målbar, så det kan bevises, at der er gjort en dokumenterbar indsats, der gør en forskel.
Der skal forankres en mere bæredygtig mentalitet i virksomheden, der er åben overfor inno-vative løsninger. Disse løsninger kan komme både fra toppen og fra bunden, da alle i organisationen er velkomne med deres ideer. Dermed skal dette tiltag sammen med andre bæredygtighedsinitiativer gøre, at Stenger & Ibsen Construction folk tænker sig om en ekstra gang ift. bæredygtige optimeringer i deres rolle.
Vi ønsker, at løsningen indeholder sparring med eksperter indenfor området biodiversitet. Her skal der gerne sparres med konsulenter/eksperter med både innovative og traditionelle løsninger for at få et modspil, og se hvad der passer til Stenger & Ibsen Construction. Ydermere anbefales det at snakke med eksperter i henholdsvis Danmark, Sverige og Finland, da forholdene er forskellige i de enkelte lande.
Mangler I inspiration til arbejdet? Så se vores skabelon: Pitch- og afleveringsskabelon
Send dit løsningsforslag til Linda på lik@bskive.dk
Formatet kan være fx pdf, PowerPoint eller billeder
Hos Gråkjær ønsker vi at bidrage positivt til den grønne omstilling. Vi arbejder derfor på at gøre den bæredygtige tankegang til en integreret del af vores måde at arbejde på.
Når du bygger efter en bæredygtig bygningscertificering, får du en bæredygtig blåstempling af dit byggeri og dokumentation for din indsats. Det er samtidig en investering i en langtidsholdbar løsning, der fremtidssikrer dit byggeri, dit værdigrundlag og din økonomi.
Gråkjær vil som udgangspunkt tilbyde alle byggerier som certificeret f.eks. Svanemærket eller DGNB. Det vil vi netop for at sikre et kvalitetsløft i fremtidige erhvervs- og boligbyggerier.
For at vi fortsat kan udvikle vores grønne omstilling i bolig – og erhvervssegmentet skal vi løfte i flok og arbejde efter ensartede strukturer i et fælles sprog – for at kunne understøtte dette er nedenstående nogle af de indsatser der skal til for at tage den grønne omstilling et skridt op:
Gråkjær, Miljøstyrelsen, DGNB akkrediteringsvirksomheder, producenter og leverandører til byggebranchen og andre relevante aktører.
Relevante kompetencer til vores Green Challenge kan være disse:
Procesingeniører, IT-design, Bygningskonstruktør, Byggeri og Infrastruktur, Energioptimering, Indeklima, Lyd og lys, forretningsudvikling - gerne i Teams på tværs af fagligheder.
Vi er dog åbne overfor nye idéer og løsningsforslag.
Mangler I inspiration til arbejdet? Så se vores skabelon: Pitch- og afleveringsskabelon
Send dit løsningsforslag til Linda på lik@bskive.dk
Formatet kan være fx pdf, PowerPoint eller billeder
Electronic waste is a growing global problem. At the same time, electronic components can have a significant environmental impact due to their material composition (i.e., due to mining of minerals and metals). Yet since these components are a central part in many products, solutions need to be found to address both sides – the design side as well as the re-looping at the end of a product life cycle. Even though DEIF is not in the business of consumer electronics, we need to ensure, that our products are handled responsibly increasing the number of components, which are reused or the amount of material that is recycled. Ultimately this should feed back into the design process and manufacturing of our solutions.
Which elements should be considered and integrated into the ideas/solutions for the suggestion to be of value to DEIF?
Before we jump to conclusion and start with a solution, the outset is very important. Thus a basic question needs to be answered at the very beginning.
Which problems do we wish to solve?
Do we want to:
There are several aspects to this project, which should be explored based on the different problems we are trying to solve. This entails an analysis of the various strategies, which include the following elements:
Roles, interest and capabilities of main stakeholders:
Main perspectives in resource looping:
Analyses to embed:
What should be the result after the implementation of the suggested solution?
Which competences are relevant for DEIF’s Green Challenge?
Send dit løsningsforslag til Linda på lik@bskive.dk
Formatet kan være fx pdf, PowerPoint eller billeder
Efterspørgslen på Tiny Houses stiger pga. tendensen indenfor minimal og simple living. Derudover er det billigt at leve i et Tiny House. Materialerne bliver dyrere, det bliver svære at skaffe nye materialer, og der sker lige nu store omvæltninger på verdensplan. Tiny Houses bliver nævnt som én af som løsningerne på at leve mere bæredygtigt.
Fordelene ved Tiny Houses er, at det er billigt og nemt at komme i gang som boligejer. Det er bæredygtigt i forhold til minimal strøm og brug af materialer. Derfor ser vi en stigende interesse for Tiny Houses.
Vi udvikler, tegner og producerer bæredygtige Tiny Houses, og vil gerne have bud på at gøre vores Tiny Houses endnu mere bæredygtige i forhold til designet, materialer, konstruktioner, produktion og genanvendelse. Vi vil gerne have de unges øjne på udviklingen af vores Tiny Houses, da det i høj grad også er dem der bliver målgruppen for Tiny Houses.
Vær opmærksomme på Bygningsreglementet. Heri findes der lovkrav om Tiny Houses på hjul (midlertidig bolig) og som helårsboliger. Læs mere i reglementet her.
For den mest bæredygtige løsning kan det være en idé, at kigge på materialer, der har et lavt CO2-aftryk og gode genanvendelsesmuligheder efterfølgende. Off-grid løsninger til helårshuset kan være fornuftigt.
Vigtigt viden omkring vægtfordelingen 60/40.
Priserne er ex. moms og forventes at stige grundet situationen på verdensmarkedet.
Terrasser, carport, anlægsgartner, markiser, gardiner, off-grid løsninger, byggetilladelse, ibrugtagningstilladelse er ikke medtaget.
Relevante kompetencer til vores Green Challenge er:
Mangler I inspiration til arbejdet? Så se vores skabelon: Pitch- og afleveringsskabelon
Send dit løsningsforslag til Linda på lik@bskive.dk
Formatet kan være fx pdf, PowerPoint eller billeder
Quantafuel ønsker at skabe mere synlighed for lokalområdet og i samarbejde med forbrugerne at sikre mest muligt genanvendelse af vores lokale plast på offentlige steder.
Vi skal havde undersøgt lovgivningen indenfor forsyningskæderne på plast samt kende stabiliteten og sikkerheden i forskellige forsyningskæder, for derudfra at kunne beslutte hvilken løsning der passer til Quantafuel. Må Quantafuel lave egen indsamling ved at sætte indsamlingscontainere/beholdere op i lokalområdet, hvilke fordele/ulemper er der i det, kontra at aftage fra lokale genbrugspladser, der indsamler plast fra erhverv og private, der forudsætter at Quantafuel vinder udbuddet.
Eller er der helt andre indsamlingsmuligheder? Hvordan kan indsamlingen, logistikken og forsyningskæderne systematiseres bedst muligt for Quantafuel?
Relevante kompetencer til vores Green Challenge er fra universitetsniveau og op.
Mangler I inspiration til arbejdet? Så se vores skabelon: Pitch- og afleveringsskabelon
Send dit løsningsforslag til Linda på lik@bskive.dk
Formatet kan være fx pdf, PowerPoint eller billeder
Hos Greenlab Skive Biogas har vi brug for en bæredygtig måde at genanvende vores overskudsvarme, som i dag bliver kølet ned af vores luftkøleanlæg. Der bliver produceret en stor del overskudsvarme igennem processen af gasopgraderingen, primært fra amin-skrubberdelen, hvor det er nødvendigt at opvarme og afkøle amin-væsken op til 135˚C og ned til 38˚C, for at den har de optimale driftsbetingelser for at optage og frigive CO2’en. Vi bruger i dag kun en lille del af overskudsvarmen til opvarmningsformål af hhv. husdyrgødningen og hygiejniserings krævende produkter, men desværre kan vi ikke udnytte det fulde potentiale.
Vores ønske er at kunne udnytte overskudsvarmen internt i processen, hvor vi i bedste fald kunne upcycle de 55˚C til 135˚C, for at mindske forbruget på vores naturgaskedel der i dag leverer varmen. Alternativt vil vi i fremtiden skulle bruge mere 80˚C vand til procesformål, hvorfor dette også kunne være interessant at kigge nærmere på.
Energieffektivitet – I arbejdet med den grønne omstilling, ønsker vi den mest bæredygtige måde at genanvende varmen på. Hvorfor det er vigtigt for os, at løsningen bruger så lidt energi til at upcycle varmen som muligt.
Relevante kompetencer til vores Green Challenge er maskinmesterstuderende samt ingeniørstuderende.
Mangler I inspiration til arbejdet? Så se vores skabelon: Pitch- og afleveringsskabelon
Maskinmesterskolen i Viborg har arbejdet med denne Green Challenge i efteråret 2022.
Se løsningsforslaget her:
Send dit løsningsforslag til Linda på lik@bskive.dk
Formatet kan være fx pdf, PowerPoint eller billeder
Washpower udvikler og sælger vaskerobotter, der kan rengøre kyllingestalde effektivt og med et markant bedre arbejdsmiljø, da alternativet er en medarbejder med en højtryksrenser. Washpower bruger i dag ”almindeligt drikkevand” til at teste maskiner og vaskemaskiner inden de sendes ud af huset.
Spørgsmålet er om der kan laves en lokal indsamling af regnvand fra Washpowers egne tagarealer?
Formålet er dels at mindske forbruget af drikkevand, dels mindske udgiften til at købe brugsvand.
Washpower ejer den gamle Jamo fabrik i Glyngøre, hvor der er 2 ha tagareal.
Udfordringer:
Washpower har forsøgt sig med at samle tagvandet op, men udfordringen var, at renheden ikke blev god nok. Så det vil især være her der skal innoveres.
Vandforbrug og -behov i stald og serviceafdeling:
Løsninger skal give Washpower adgang til rent vand som kan bruges til test og vask.
Følgende kriterier skal indgå:
Find casebeskrivelsen her.
Mangler I inspiration til arbejdet? Så se vores skabelon: Pitch- og afleveringsskabelon
Send dit løsningsforslag til Linda på lik@bskive.dk
Formatet kan være fx pdf, PowerPoint eller billeder
GreenLab is a unique, green and circular industrial park – and a frontrunner in Power-to-X. We generate sustainable energy, supply it to the businesses located here, and transform it into heat, electrofuels, and other green products.
In the industrial park, everything will be connected by the SymbiosisNet™ – an intelligent grid of energy and data that will let companies share their surplus energy and resources in accordance with their scale-up demands.
How do you create a business model for an energy cluster with a sharing economy like GreenLab’s unique SymbiosisNet?
There are many different exchanges of resources in GreenLab and a lot of connections to external markets, and fluctuating prices in various markets. All the price fluctuations on different markets will influence how you can make a fair and transparent way of trading energy and resources inside a green industrial park like GreenLab.
It is an open challenge depending on your educational background. We invite you to challenge us and ask us questions
An example could be a data scientist background. You could investigate some of the data on energy usage and resource streams in the park and maybe on the fluctuations in the markets external to the park – and maybe even come up with a suggestion of an algorithm to control this.
There are different ways to attack the task. But a good starting point could be to consider the following:
In GreenLab, we are working with the green transition of industry. It is no longer for discussion that climate changes are due to human activities and that immediate action is needed. Even though we think individual efforts are important, we believe that systematic change at the industrial level will have the greatest effect.
A lot of the work to be done is in the industrial and energy sectors, and one of the big questions is how we can revolutionize the producing industry to make it green and rely on renewable energy resources instead of fossil fuels. Therefore, our goal is to make the production industry greener and more independent of fossil fuels. We do this by changing how energy is generated, stored and shared in an eco-cluster of green companies.